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Abstract

Views about correct ways of obtaining knowledge develop from socially constructed tenets and beliefs. The dominant

beliefs about how health research should be conducted are derived from the biomedical model of human health. The

beliefs are maintained by traditions developed in support of the orthodox model and by power relationships. This paper

examines the impact of the orthodox views of the biomedical model on the research methods used to investigate

population health issues. Experimental design is the ‘‘gold standard’’ for research in the biomedical model. Beliefs

about the superiority of experimental research have affected most types of health research. The role that methods

assume in maintaining the orthodoxy is examined. Acceptance in other health disciplines of the attitudes of the

dominant paradigm and limited options for research and training in alternatives to the orthodoxy became major

influences reinforcing orthodox beliefs about health research.
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Introduction

Generally accepted views about correct ways of

obtaining knowledge arise from socially constructed

tenets and beliefs (Kuhn, 1962; Wolpe, 1994; Zito,

1983). Orthodox views about health and correct ways to

conduct health research are maintained by traditions

that are developed in support of dominant beliefs

and by power relationships (Engel, 1977; Gillet, 1994;

Lewontin, 1991). The impact of orthodox views on the

research methods used to investigate phenomena, and,

in turn, the role that methods assume in maintaining

the orthodoxy, is less often considered. This paper will

summarize developments shaping western orthodox

views about human health that are relevant for

considering their impact on research methods. A brief

overview of the historical roots of the dominant

biological paradigm provides background for under-

standing orthodox beliefs about how to gain knowledge

about human health. It will be argued that orthodox

methodology arising from the dominant paradigm has

impeded innovation in health research. The paper will

focus on quantitative research investigations dealing

with population health issues.

Knowledge about human health: The dominant orthodoxy

As socially constructed fields of learning, dominant

beliefs in a discipline are based on an underlying

ideology. An ideology is an organized body of views

that seek to monopolize ways of thinking and speaking

about the world (Zito, 1983). The dominant tenets and

beliefs about how health research should be conducted

are derived from the biomedical model of human health

(Engel, 1977; Gillet, 1994). The biomedical model

functions like a traditional natural science, attempting

‘‘to isolate distinct and identifiable diseases which are

causally produced by some underlying patho-physiolo-

gical condition which can be isolated, verified and

monitored’’ (Gillet, 1994, p. 1127). In this biological

paradigm, explanations for psychosocial, psychological,
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and behavioral aberrations are sought in biochemical

and neurophysiological causes. The model builds on

the philosophical concept of reductionism which holds

that complex phenomena are derived from single

principles or causes; and mind–body dualism, a doctrine

that separates the mental from the somatic (Engel,

1977).

In the biomedical research model, it is believed that

the highest form of knowledge is provided by experi-

mental research. Seeking the simplicity inherent in

reductionism, the focus is experimental manipulation

of hypothesized causes—germs, genes, chemicals, or

other substances, that are easily isolated and monitored.

The model deals most comfortably with single micro-

organisms, biochemical agents, or structural defects

(Gillet, 1994). This arises naturally from the origins of

modern scientific medicine in the germ theory of disease.

After discoveries of microorganisms involved in specific

diseases, germ theory replaced pre-scientific concepts of

miasmas, or disease causing vapors, which characterized

causal beliefs throughout most of the 19th century

(Susser & Susser, 1996).

Soon after the advent of germ theory, it was learned

that infection with microorganisms is generally not

sufficient to explain the onset and course of an infectious

disease (Dubos, 1965; Duncan, 1988). In microbiology,

relative virulence is the concept used to discuss

differential susceptibility to infection. Virulence is

defined as the relative capacity of an infectious agent

to overcome available host defenses. Complex processes

involving variations in both the disease agent and the

host determine relative virulence. Normal host defenses

function to protect the individual from the multitude of

potentially disease-producing organisms to which there

is constant exposure. Relatively nonpathogenic organ-

isms, however, may infect persons who are ‘‘immuno-

compromised’’. This means that ‘‘minor alternations of

host defenses may create major differences in the

apparent virulence of some pathogens’’ (Sparling, 1983

p. 637).

While knowledge about relative virulence displays

multicausal processes, the concept is derived from the

perspective of the pathogen or disease agent. The agent

focus in research on infectious diseases was transferred

to other areas of health research, including clinical,

epidemiological, and even some social science research

on health. Traditional epidemiology recognized, at least

theoretically, the importance of the environment and the

condition of the human host in the occurrence of

diseases. Still, germs or other disease agents maintained

a central position in research on specific diseases. Even

in the triad model of classical epidemiology, ‘‘the single

element of the agent is represented as if it were equal

in importance to the variety of relevant factors in the

host and the multitude of environmental influences’’

(Duncan, 1988, p. 36). Vast bodies of research show that

the excessive weighing allocated to single agents as

causes of disease is not warranted.

As infections became less important as the dominant

type of disease, attempts to link a pathogen with each

specific disease shifted to efforts to identify other types

of disease agents. These studies often involved testing

hypotheses about single causes to predict specific

pathological deviations, with attention centered on

biological and chemical agents. The specific-cause

biological paradigm of the biomedical model has even

dominated research on the complex processes involved

in human aging. It is not uncommon for cellular aging to

be cast as an opposing explanation to exposure to health

damaging influences over the life course for age-related

increases in the prevalence of diseases. For example,

specific biological alterations in antitumor defenses with

aging are investigated as alternative, rather than

supplemental, hypotheses to exposure to carcinogens,

nutrition, and other joint or intervening influences

affecting positive relationships between age and most

cancers (Dean, 1997; Miller, 1991).

Documented weaknesses in the dominant orthodoxy

It is well known among biologists (Dubos, 1965;

Lewontin, 1991; Lewontin, Rose, & Kamin, 1984;

Sparling, 1983; Strohman, 1997), clinical practitioners

and researchers (Engel, 1977; Gillet, 1994; Martin,

Danner, & Holbrook, 1993; Miller, 1991), public health

specialists (Davison, Macintyre, & Davey Smith, 1994;

Rose, 1992, 1985; Susser & Susser, 1996), and epide-

miologists (Duncan, 1988; Rothman, 1986; Vogt, 1992)

that diseases seldom develop from single causes. Yet, as

outlined above, far more research is focused on disease

agents than on host defenses and the interactions among

biological, psychological, and social influences involved

in the protection or breakdown of human health. A

problem-ridden paradigm for all types of conditions,

when the disease agent perspective is transferred from

infectious to chronic diseases, the weaknesses of the

model are even more sharply apparent (Davison et al.,

1994; Duncan, 1988; Gillet, 1994; Ory, Abeles, &

Lipman, 1992).

The relative capacity of an infectious or any other

disease agent to overcome available host defenses is

determined by complex processes that operate at

different levels of causal influence (Dubos, 1965; Finlay

& Falkow, 1989; Sparling, 1983). Lewontin (1991)

stresses the importance of distinguishing between

infectious disease agents and causes, emphasizing that

the logic applies equally to other single agents (carcino-

gens, specific genes, behaviors) as causes of specific

diseases. That diseases are not simply caused by single

agents or factors is clearly illustrated by the multicausal

processes involved in the functioning of even the most
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basic biological components of health: the genes

(Kishino & Waddell, 2000; Lichtenstein et al., 2000;

Strohman, 1997; Waddell & Kishino, 2000). The genes

of individuals interact with each other and environ-

mental influences to shape variations among individuals

within species. Knowledge of the complete molecular

structure of every gene in an organism would not assure

the prediction of what that organism would become

(Lewontin, 1991). These points are illustrated by recent

findings from research on cancer in cohorts of mono-

zygotic twins, who share all genes, and dizygotic twins,

who share about 50% of their genes (Lichtenstein et al.,

2000). Comparing the cancer rates of twin pairs, the

researchers concluded that environmental causes ac-

count for most cancers, while genetic factors make a

relatively minor contribution to the occurrence of most

neoplasms. These researchers pointed out that genes

may be modified by environmental influences, and that

environmental influences may operate differently in the

presence of specific genetic conditions.

Recently documented increases in osteoporosis

among men provide another example of the complexity

inherent in disease processes. Traditionally considered a

disease of women, a strong increase in osteoporosis has

been documented among men since 1970 (S^rensen,

2000). Factors such as exercise and diet are considered

responsible for its growing prevalence. Since genetic

aspects of osteoporosis existed prior to 1970, it appears

that modern lifestyles account for changes in the onset

and course of this disease in both men and women. The

serious gaps in knowledge about coronary artery disease

provide another example of how little is known about

interactions among genes and their products and

environmental influences in the development of disease.

Experts in molecular biology point out that research on

genetic predisposition to disease needs to recognize both

the contribution of multiple genes and the myriad

influences from the life history of individuals (Strohman,

1997).

The inability to reduce diseases to simple cause and

effect mechanisms is even more readily seen in diseases

that have etiologies that appear quite individualistic.

Gillet (1994) uses chronic allergic rhinitis to illustrate the

individualistic features of inflammatory diseases. He

points out that inflammatory reactions involving bio-

chemical processes in the lining of the nasal passages

favor chronic infections with organisms that would

normally be cleared from these passages. It has been

found that the allergic factors stimulating the inflam-

matory reactions are multiple and shifting in individual

patients. Thus, not only are multiple causal factors

involved, but the necessary and the sufficient factors for

the condition to occur change both across persons and

within the same person. The immune system is

functioning or malfunctioning in complex ways that

are not understood.

Knowledge about health and disease as people age is

seriously constrained by research focusing on narrow

hypotheses. The greater prevalence of diseases among

old people is not explained by hypotheses about declines

in immune functioning with aging (Miller, 1991). There

are inconsistencies in the evidence from research studies

examining aging declines in biochemical aspects of

immune functioning or ‘‘immune senescence’’. Many

old people maintain immune responses at comparable

levels of vigor to those observed in young people

(Candra, 1993; Saphire, Rudolph, Hackleman, & Stone,

1993). Furthermore, it appears that complex remodeling

of immune functions with age, in contrast to a

unidirectional deterioration, is possible (Franceschi,

Monti, Sansoni, & Cossarizza, 1995; Hirokawa et al.,

1994).

The examples cited in this section provide only a

limited selection of the wide-ranging evidence that

multicausal processes are involved in the onset and

course of disease. It may be concluded that at this time

knowledge about health and aging will be most readily

expanded by research that identifies and explains

interactions among multiple influences.

Maintaining the orthodoxy

How can it be, in the face of extensive scientific and

clinical evidence showing that diseases result from

complex multicausal processes, that research on human

health continues to focus so heavily on single factors

that most often are physical or biological agents? The

most easily identifiable explanation for the continued

dominance of the orthodox biomedical paradigm is

control over institutions and resources. In recent times,

this dominance has been compounded by the power of

pharmaceutical companies and other vested interests

influencing and limiting the research agenda. With

extensive concentration of research effort and resources

on testing drugs and identifying genes or other agents

involved in specific diseases, it is difficult to focus

attention on mapping how social, behavioral, psycholo-

gical, and biological variables interact in disease

processes. Numerous drugs, many with serious side

effects and unknown long-term consequences, especially

for people taking multiple drugs or who have various

genetic and lifestyle profiles, are being made available

and marketed aggressively.

Genetic aspects of some relatively rare conditions

have been identified, but the complex knowledge needed

to understand more prevalent diseases remains illusive.

Discussing the excessive claims arising from the Human

Genome project, Holtzman and Marteau (2000) remind

us that social structure, lifestyle, and environmental

influences account for much larger proportions of

disease than genetic differences. They conclude that
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the genetic mantle now clouding medicine will prove to

be like the emperor’s new clothes. The implications of

these developments for health promotion, understand-

ing aging, and the effectiveness and ability to fund

health care systems are generally ignored.

The dominant biological paradigm has become so

entrenched that knowledge challenges to the belief

system have had little impact on orthodox views. The

developments illustrate how orthodoxies develop ideol-

ogies that define standards in the professional, educa-

tional, and funding institutions that gradually assimilate

the ideology (Engel, 1977; Gillet, 1994; Kuhn, 1962;

Wolpe 1994). While it is known that firmly entrenched

orthodoxies maintain excessive power and influence over

an extended period of time, reinforcing influences that

inadvertently serve to maintain the orthodoxy are less

well understood. Although generally not recognized, the

research methods used to study health phenomena are

contributing factors which reinforce orthodox beliefs.

Research methods in the biomedical model

The 19th century discoveries leading to a general

acceptance of the germ theory of disease promoted a

science of medicine to replace what was viewed as

disorganized, unscientific, anecdotal medical practice

with research and knowledge based on biological

understanding (Duncan, 1988; Rosen, 1958; Susser &

Susser, 1996). Scientific medicine developed parallel

with, and was fundamentally affected by, the rapid raise

in prestige and power of the positivistic science that

dominated western thinking at the turn of the century.1

In the positivistic paradigm, the scientific method

provides knowledge by singling out empirically obser-

vable entities in order to predict an outcome of interest.

A distinction between knowledge derived from empirical

observations and abstract concepts is one of two central

dogmas of positivistic science. The other is reductionism

(Quine, 1962). These two dogmas established a split

between abstract reasoning and empirical observation.

Empirical science was to identify cause and effect

relationships that are sequential and replicated. Since

in this paradigm, if the cause does not occur the effect

cannot occur, causation is deterministic. The split

between abstract reasoning and empirical observations

in a deterministic science was consistent with the mind–

body dualism accepted by the Church.2

The powerful historical roots shaping the tenets and

beliefs that emerged in the scientific biomedical model

created an air of certainty that continues to pervade

attitudes about how to conduct health research. The

model holds that certain knowledge is obtained only

from observations made in experimental research. This

means that experimental design is the ‘‘gold standard’’

for obtaining knowledge about causation. Experimental

design requires the random allocation of research

subjects to experimental and control groups. The belief

is that causation can only be determined when a test

factor can be manipulated in an experimental group that

is compared with a control group that has not been

exposed to the test factor. This design allows findings for

the outcome variable of interest to be collected and

compared. It is believed that the random allocation of

research subjects creates groups that are comparable in

every aspect with the exception of the influence of the

test factor. The goal is to predict an outcome in the

experimental group that is not found in the control

group and thus can be attributed to the test factor.

Belief in the superiority of the experimental model

arises quite logically from the two dogmas of positivism.

Causal evidence about test factors (agents) can be

determined only by empirical observation. The agents

studied are separated (reduced) from larger entities, the

causal processes in which they are embedded, in the

belief that the ability to manipulate a biological or
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1The 20th century witnessed first the development and later

the rejection of a philosophy of knowledge, logical positivism,

based in the view that all knowledge is derived from verifying

empirical observations about phenomena without the intrusion

of mental conjecture (Suppe, 1977a, b). This scientific paradigm

was developed and refined by a group of philosophers and

mathematicians that came to be known as the ‘‘Vienna Circle’’.

David Hume had established philosophical views articulated in

positivism long before the type of mathematical logic that

characterized the work of the members of the Vienna Circle. In

the 18th century, Hume developed two key principles that

became the ‘‘continuing and cardinal points of empiricist

doctrine’’ (Barrett, 1962): there should be a distinction between

truths derived from ideas and truths found in empirical sciences

about matters of fact, and the reduction of ideas to sensory

experiences. According to Hume, causation is sequential and

exhibits regularity. The cause is always followed by the effect,

and if the cause does not occur, the effect cannot occur. In this

view, causation is deterministic. These principles provided the

foundation for concepts about necessary and sufficient causes

of events, operationalized by John Stuart Mill in the 19th

century, and exerting strong influence on the causal thinking

behind the biomedical model.

2 In his widely discussed paper outlining the need for a new

medical model, Engel (1977) concluded that the decision by the

Church in the middle ages to allow dissection of the human

body was a major historical influence on the development and

strength of the model. He considers this concession by the

Church to study the internal units of the human body a tacit

injunction against a corresponding investigation of the mind

and behavior, which were to remain the domains of the Church.

At the same time, investigations of the anatomical units of the

body were consistent with the mechanistic science of the day.

With mind–body dualism firmly established, a reductionistic

approach to understanding human health was supported by the

dominant institution of the time.
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chemical agent to predict an independent statistical

effect on an outcome will ultimately provide useful

knowledge about diseases in humans.

This model ignores the problem that predicting an

independent causal effect is quite different from under-

standing the context of causal relationships. Predictions

made on the basis of a statistical effect observed for a

factor on an outcome are not sufficient for explaining

causation. It is now known that interactions among

many influences will overwhelm statistical predictions

about single factors (Holtzman & Marteau, 2000;

Martin et al., 1993; Scriven, 1962, 1959; Suppe, 1977b).

Most discussions about the superiority of experimen-

tal design in the biomedical model use examples of

treatments, usually drug treatments, to illustrate points

about the importance of randomization to avoid

confounding in testing for the effects of the manipulated

agent. Indeed, it is important to assure that unknown

influences do not account for or hide the effects of a

drug treatment. However, since health maintenance and

the development of diseases are inherently multicausal

phenomena, detecting a statistical effect of one factor

provides very limited information that can be mislead-

ing. Even when the goal is to test for treatment effects,

important knowledge may be lost if the model and

methods do not allow the elaboration of the conditions

that determine the effectiveness of the treatment. Thus a

statistical effect in a treatment group that is not found in

the control group may indeed be ‘‘real’’, while the actual

effects of the treatment may differ considerably for

various members of the group.

Two major influences supporting the orthodoxy are

the acceptance in other health disciplines of the attitudes

and models of the dominant paradigm, and the limited

options for research and training in alternatives to the

orthodoxy.

Accepting the beliefs and models of the orthodoxy

As mentioned above, in research on human health,

the biomedical experimental model and/or beliefs about

the superiority of the model and the importance of

emulating the model were transferred from laboratory

research to clinical and population studies. Since

experimental design is rarely possible and often un-

ethical in clinical and population health research, the

goal became to approximate it with quasi-experimental

designs.

In the biomedical model, observational studies are

considered a lower form of research inquiry than

experimental studies (Edwards, 2000; Pocock & El-

bourne, 2000; Rothman, 1986). In observational re-

search, subjects, rather than being allocated to

experimental and control groups, are studied in natural

settings or in samples selected to represent general or

special populations. The inferiority status assigned to

observational studies is one of the major orthodox

beliefs of the biomedical model. This belief is perpetu-

ated in spite of the knowledge provided by observational

research in astronomy, anthropology, geology, and

other disciplines. Biology is replete with observational

research that provided major scientific advances such as

knowledge about evolution and discoveries associated

with the mapping of the human genome. Furthermore,

there is evidence from overviews of evaluation research

that observational studies provide estimates of treatment

effects similar to those found in randomized controlled

trials and that randomized trials have produced contra-

dictory results in studies of the same clinical treatment

(Benson & Hartz, 2000; Concato, Shad, & Horwitz,

2000).

Nevertheless, acclaimed as the gold standard, the

experimental paradigm has fundamentally affected the

way that observational studies are conducted in

population health research. A primary goal is to assure

that confounding variables do not distort the ‘‘indepen-

dent’’ statistical effect of the study variable on the

outcome variable. Confounders are all of the influences

that purportedly would be removed by random alloca-

tion of the sample members into experimental and

control groups. When random allocation to experimen-

tal and control groups does not occur, it is necessary to

control for the confounders statistically in order to draw

conclusions about the causal influence of the study

variable. Thus the belief that causation can be assessed

by testing for the ability of a factor to independently

predict an outcome, controlling for other factors, a

central tenet of the biomedical model, took root in the

analysis of data drawn from samples of populations.

Since the prediction occurs in group data and not for

every single individual, the outcome must be called

‘‘statistical risk’’ rather than a constant and invariable

causal effect.

The risk factor concept, and the methods used to

identify statistical risks for specific factors, have

dominated quantitative population health research in

recent times. Risk factor research has been extremely

successful in identifying risks statistically correlated with

specific diseases and/or mortality. This success, along

with the barriers to causal discovery in this way of

conducting research, are responsible for the escalation of

risk factors and for the confusion that plagues informa-

tion about specific risks. In the existing bodies of

research on factors (agents) related to morbidity and

mortality in research on population health, little is

understood about the predictions made for specific

factors after the effects of other influences have been

removed statistically (Susser & Susser, 1996; Taubes,

1995).

It is quite common that contradictory findings about

risk factors are accompanied by unwarranted specula-
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tive discussions about possible reasons for the contra-

dictions. The risk concept itself, and the way methods

are used to identify statistical risks, are rarely ques-

tioned. Since the model focuses on the ‘‘independent’’

statistical prediction of a study variable on an outcome,

the ways that other variables function with or alter the

influence of the test factor generally receive little

attention and may even be deliberately avoided so as

not to disturb the prediction.

Contemporary research challenges

The deterministic beliefs on which positivism builds

are no longer compatible with contemporary science.

Causal thinking has moved beyond beliefs about single

causes that predict an outcome to the study of dynamic

systems. It is now recognized that rules for determining

when an event is necessary and sufficient for the

occurrence of an outcome over-simplify causal pro-

cesses. The outcome may have alternate causes, or the

event predicting the outcome may occur simultaneously

with a causal influence that has not been discovered, or

under a specific set of conditions (Edwards, 2000;

Scriven, 1959; Suppe, 1977a, b).

Health research limited to predicting statistical effects

of single factors cannot address the challenges raised by

modern advances in knowledge about causation. What

were considered random variations producing uncer-

tainty in predictions may be real differences arising from

the effects of earlier conditions or from interactions

among complex forces (Dubos, 1965; Gillet, 1994;

Holtzman & Marteau, 2000; Lewontin, 1991; Martin

et al., 1993; Scriven, 1962, 1959). It has been documen-

ted that interactions among influences can have pro-

found effects on the ways that specific variables are

related to outcomes. A major weakness of risk factor

research is that it relies on risk ratios that relate

exposure to outcome with no elaboration of intervening

pathways (Susser & Susser, 1996). Separating compo-

nents of causal processes from the other variables

affecting an outcome will inevitably produce inconsis-

tent findings and inhibit knowledge about how a test

variable operates in causing an outcome. Thus experi-

mental design and risk factor research have similar

weaknesses. The elaboration of multiple causes and

modifying influences is neglected or even precluded in

most standard approaches to research design and the

statistical analysis of data.

It must first be assured that a predictor is indeed a

determinant, and under what conditions causal influence

occurs. Knowledge about causal processes, rather than

single predictors, allows the identification of misleading

correlations and biological deviations that are co-

morbidities rather than causes. Biological markers are

not causes. They are outcome variables that result from

interactions among variables that perhaps cannot or

should not be acted upon in isolation.

Limitations in health knowledge available from

traditional experimental and quasi-experimental re-

search have been discussed in many academic journals

and books (e.g., Dean, 1993, 1996, 1997; Dean, Kreiner,

& McQueen, 1993; Dean & Hunter, 1996; Pearce, 1990,

1996; Rose, 1985; Smith & Torrey, 1996; Susser &

Susser, 1996; Taubes, 1995; WHO, 1992). In 1995, issues

of inconclusive and contradictory research findings on

risk factors were taken up in the journal Science. Experts

in risk factor research interviewed by a science journalist

acknowledged that systematic errors, bias, and con-

founders that can overwhelm statistical variation are

ignored in the methods often used to study risk factors.

The Dean of the School of Public Health at Harvard,

commenting on the problems, said: ‘‘We are fast

becoming a nuisance to society. People do not take us

seriously anymore, and when they do take us seriously,

we may unintentionally do more harm than good’’

(Taubes, 1995). Already, in 1985, Geoffrey Rose, writing

about the limits of the risk factor model, noted that even

though methods based on the relative risk concept are

not measures of etiological outcome, they have essen-

tially precluded other methodological approaches.

Quantitative elaboration of complex relationships

Recognizing that the tools regularly used are not

adequate for researching complex problems, Smith and

Torrey (1996) emphasized that research for under-

standing the dynamic systems affecting individuals and

societies requires theories of dynamic processes and

data, and methods sufficient for testing the theories.

They recognized that new methodologies are needed to

study nonlinear, dynamic systems, and that quantitative

and qualitative methods need to be more systematically

integrated to advance new theory.

Contextual frameworks that recognize the complexity

inherent in causal relations, such as sufficient and

component causes (Rothman, 1986) and causal back-

ground context (Edwards, 2000), have been suggested

for health research. Taking up the shortcomings of a

strict doctrine of causality, Rosenberg (1968) created a

framework for investing antecedent, intervening, con-

joint, and conditional relationships. The methodological

challenge is to find ways to examine the complexity in

the analysis of data.

Over the past several decades, options have become

available that facilitate the quantitative elaboration of

complex influences in analyses that examine how

relevant variables in a statistical problem relate to each

other (Arminger, 1993; Cox & Wermuth, 1996; Ed-

wards, 2000; Greenland, Pearl, & Robins, 1999;

Wermuth, 1993; Whittaker, 1990, 1993). Graphical
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models are a broad class of statistical model portraying

association structures in conditional independence

graphs. Graphical chain models may be considered a

series of regression models, which, in contrast to simple

regression models, are concerned with identifying

relationships among all study variables, including those

usually considered explanatory or control variables

(Didelez, Pigeot, Dean, & Wister, 2002). Thus, with

graphical models, the context of a relationship between

a hypothesized cause and outcome can be studied. These

newer methods facilitate both the analysis of complex

relationships and the identification of hidden relation-

ships, in some applications without the need for limiting

parametric assumptions. This makes it possible to

consider antecedent and intervening relationships that

affect statistical connections between test variables and

outcomes.

Mathematical and statistics journals have published

articles on graph theory and applications for over two

decades (see Cox &Wermuth, 1992; Darroch, Lauritzen,

& Speed, 1980; Lauritizen & Wermuth, 1989). Yet, in

spite of their potential for improving knowledge, these

methods may be rejected in applications for health

research and in the peer review of manuscripts for

publication. This occurs because the methods do not fit

orthodox beliefs, or because reviewers are not familiar

with concepts and methodology used to explain the

methods. At the same time, old methods are often

accepted without question in spite of documented

weaknesses and limitations. Nevertheless, innovative

researchers are making progress in using new methods

to advance knowledge.

Recognizing the lack of sound methodology to infer

causal gene relationships, Waddell and Kishino (2000)

used cluster inference methods and graphical models to

study relationships among genes. Discussing the com-

plex conditional distributions in cancer cell lines and

their dependence on mutation status in these cell lines,

they concluded that clustering based on partial correla-

tions usefully identifies sets of genes for graphical

modeling or other approaches to uncovering causal

relationships which are currently clouded in complexity.

There are also innovative approaches to measuring

outcomes. Neil-Dwyer, Lang, Smith, and Iannotti

(1998) used a temporal graphical chain model to study

the direct and indirect effects of possibly adverse

influences on outcomes of subarachnoid haemorrhage.

They found associations among the influences that

helped to explain outcome, and determined that age

was not related to either risk group or outcome.

Ruggeri, Bigger, Rucci, and Tansella (1998) used

graphical chain models to study antecedent and inter-

vening variables affecting mental health outcomes. They

found that measures of psychological state, disability,

and functioning at initial assessment predicted out-

comes, with greater improvement in the more severely

ill. At the same time, higher costs included in the model

as an intervening variable predicted poorer outcomes at

follow-up. It was concluded that the graphical models

provided a useful methodology for understanding out-

comes.

Graphical models have been used in a variety of

research endeavours to gain knowledge about how

multiple influences affect outcomes and how intervening

variables change the statistical effects of predictors.

They have been used to study chromosome mapping

(Edwards, 1992), risk factors for coronary thrombosis

(Whittaker, 1993), neonatal and post-neonatal mortality

(Mohamed, Diamond, & Smith, 1998), the prognosis of

head injuries (Sakellaropoulus & Nikiforidis, 1999), and

nonhealth applications such as credit behavior (Stan-

ghellini, McConway, & Hand, 1999).

In a methodological study (Didelez et al., 2002),

graphical methods were compared with logistic regres-

sion in research on coping with chronic disease. While

many findings were the same with both analytic

approaches, there were differences that illustrate the

potential of methods that identify indirect, partial, and

hidden relationships. For example, the logistic regres-

sion found a strong, highly significant independent

relationship between the type of illness and successful

coping with three chronic conditions. Using graphical

methods, it was shown that exercise, mutual aid, stress

reduction, and perceived seriousness were responsible

for (explained away) the relationship between the type of

illness and coping. Exercise was positively related to

coping regardless of the type of illness. The relationship

between exercise and coping was stronger and highly

significant for those persons who did not use mutual aid

compared to those who did, but was not significant for

those who reported extremely serious chronic condi-

tions. It was concluded that graphical chain models can

be used to expand and refine the information provided

by traditional regression models, moving from the

simplification of complex processes to the expression

of their inherent multidimensional nature.

This does not mean that these methods are panaceas

for causal understanding. The methods must be used

appropriately and rigorously to avoid the dangers

inherent in model selection from the large numbers of

possible models in multivariate analytical problems.

While looking away from multiple and moderating

influences to highlight statistical effects of single test

factors provides incomplete, really primitive informa-

tion, statistical modeling demands careful analytic work

by the researcher to avoid mis-specification of statistical

connections. Just as with good qualitative research,

indeed serious research of any kind, it is the knowledge

of the researcher, logic and theory that must guide

model selection in a statistical analysis. Statistical

techniques are only tools for use in sound academic

work and knowledge development.
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Limited options for research and training in alternatives to

the orthodoxy

The problems arising from adopting the beliefs of the

orthodoxy are intensified when methods take on a force

of their own. The result is that essentially no options

become available for many researchers to learn about

newer methods even though they may be far more

relevant and useful for their research. The occasional

options that do arise for learning about the new methods

may be taken over by the power of the status quo.

Research then becomes driven by orthodox thinking and

traditional methods, in spite of their weaknesses, rather

than being guided by the development of theory and the

substantive issues in the existing body of research on a

topic. When this happens, old ways of doing things are

passed along to subsequent generations of researchers in

methods courses that become stylized. Teachers who

become experts in making traditional ways of thinking

and conducting research seem certain and uncompli-

cated become popular. Since bringing up weaknesses in

traditional approaches, or presenting new methods that

may not be as easily understood, creates challenges to

this popularity, questioning the old ways becomes

heretical. Thus, traditional beliefs are defended, projects

based on the traditional beliefs and methods are funded,

and innovation is constrained.

In health research, these dynamics mean that discus-

sions about limitations in the experimental model for

understanding causal processes receive little attention.

Traditional statistical methods for the analysis of

population health data in research based on the

paradigm may be taught and accepted with little

questioning. It is not uncommon for standard regression

models to be used with little concern for either violation

of the measurement and mathematical assumptions on

which the validity of the models depend or for the limits

of the methods for analyzing the complexity inherent in

most statistical relationships. These commonly used

models may require parametric assumptions that are

violated or they may implicitly assume, incorrectly, that

relationships found do not differ for subgroups of the

population (Greenland et al., 1999).

Beyond the barriers of orthodox beliefs

In the era dominated by the experimental model and

quasi-experimental designs, statistical relationships

found in research in this paradigm were inadvertently

given a hardness and power that are not warranted. It is

easily forgotten that the variables selected and how they

are measured determine what is found, that simple

changes in the values assigned to variable categories or

the removal/addition of an uncertain statistical relation-

ship can change the findings fundamentally. When

variables that contribute causal influence, or those that

intervene to moderate statistical associations among

variables, are only controlled as parallel factors called

confounders, interactions among the variables in the

model are ignored. The results of these analyses will

generally be inconsistent and may be misleading. The

conceptual models presented in many studies are multi-

causal, but the statistical methods used to analyze the

data tend to be appropriate only for simple or single

cause models (Arnetz, 1996).

Research applications now available document the

untapped promise inherent in statistical models that can

elaborate complex relationships. To move beyond the

barriers of orthodox beliefs, the analysis of data needs to

focus on the complexity inherent in causal processes; a

complexity which is often represented in theoretical and

conceptual models. For example, aging is an area of

study clouded in uncertainties arising from the neglect of

research on complex relationships. Neil-Dwyer et al.

(1998) found that age was not independently related to

either risk group or outcomes of subarachnoid haemor-

rhage. Similarly, it is known that measurable declines in

immune functioning, resulting in mild to moderate

immune deficiency with advancing age, are not an

adequate explanation for age-related increases in disease

occurrence (Miller, 1991). The inconsistencies in evi-

dence about aging declines in biochemical aspects of

immune functioning, findings that many old people

maintain immune responses comparable to young

people (Candra, 1993; Saphire et al., 1993), and evidence

of complex remodeling of immune functions (Franceschi

et al., 1995; Hirokawa et al., 1994), suggest interactions

among psychological, behavioral and environmental

influences, and physiological variables that need ela-

boration.

Studies limited to specific agents preclude knowledge

about the multicausal processes embedded in narrow

relationships between a predictor and an outcome. Since

available evidence indicates that maintaining health

depends on the ability to adapt to or resist stress and

to repair or replace damaged molecules (Kaplan, 1991;

Martin, Danner, & Holbrook, 1993; Vogt, 1992),

elaborating antecedent, parallel, and intervening influ-

ences will provide knowledge needed for more effective

prevention and treatment of cancer and other major

diseases.

More qualitative research is needed to provide

relevant knowledge about psychosocial and behavioral

variables, and to help evaluate quantitative measures

before they are included in multivariate analyses.

Psychosocial and behavioral variables need to be

understood from the perspective of the layperson.

Professionally constructed scales may have limited

relevance for understanding psychosocial and behavior-

al variables embedded in causal relationships. In multi-

variate analysis, complicated scales often confound or
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distort causal relationships (Dean, 2000; Dean & Salem,

1998).

These considerations do not mean that the experi-

mental model is not important for some purposes. There

are, of course, times when specific phenomena, when

separated from the causal processes in which they are

embedded, are usefully studied in controlled experi-

ments. Randomized trials provide evidence contradict-

ing findings suggesting that hormone replacement

therapy and vitamin E reduce the risk of cardiovascular

disease, and that beta carotene lowers the risk of lung

cancer (Pocock & Elbourne, 2000). Still, the limits of

such research for causal understanding need to be

recognized. This is clearly illustrated by current discus-

sions about recent findings that placebos have done as

well as, or better than, antidepressant drugs in clinical

trials conducted by drug companies (PsycPort, 2002). At

the same time, there is evidence that suicide and

attempted suicide rates do not differ for drug and

placebo treated groups in clinical trials, and that placebo

treatment produces changes in the brain that affect

depression positively (Leuchter, Cook, Witte, Morgan,

& Abrams, 2002). The latter findings are seen to support

the continued use of placebo groups in clinical trials

(Walsh, Seidman, Sysko, & Gould, 2002; Khan, Warner,

& Brown, 2000). However, it would seem that far more

useful knowledge would be gained by examining the

relationships among placebos, antidepressants, and

behavioral and environmental variables to identify

direct and indirect effects of variables leading to

depression and suicide.

Summary

The tenets and beliefs of the biomedical model have

seriously constrained the knowledge available for

promoting and protecting human health. Risk factor

research on an endless array of disease agents or possible

treatments/interventions has inherent limitations. Test-

ing to see if the statistical effects of some variable remain

after controlling for the influence of other variables may

seriously underestimate or overestimate the true risk of

important causal influences. This means that establish-

ing a link between a factor and an outcome by holding

constant moderating and mediating influences ignores

the real nature of causation. A given study factor may

(or may not) be the most important part of the processes

affecting an outcome, but it is the interaction of the

factor with other causes and with intervening and

moderating influences that constitute causation.

In and of themselves, statistical relationships have no

reality that extends beyond their usefulness for expand-

ing our understanding of those subjects that are

important for research and practice. The statistical

analysis of data only provides information about how

phenomena relate to each other when the variables are

measured, and the data analyzed in specific ways.

Stripping away so-called confounders does not alter

the reality that the relationship occurs in the context of

moderating and mediating causal influences. Both the

quality of the measurements and the extent to which an

analysis provides information about how relevant

influences operate will determine the state of knowledge

on a given subject.

It has now been over 20 years since Engel’s (1977)

seminal paper on the need to move beyond the narrow

biological model of human health to a more sound and

effective biopsychosocial model. There are pockets of

research documenting the importance of social, psycho-

logical, and psychosocial variables for health and disease

(Adler & Matthews, 1994). As in investigations of

biological variables, psychosocial research, in spite of

the complex models often displayed, generally examines

the effects of specific variables. This occurs because of

the limitations of readily available analytic methods and

because of limited options for researchers to learn about

alternatives. New education and funding priorities are

needed to move beyond a biological or psychological or

any other narrow model of human health. Challenging

orthodox beliefs about health research will improve

causal knowledge to better inform health care services.

The dysfunctional dichotomies arising from classical

empiricism hang on in the form of false dichotomies that

pit nature against nurture or posit micro over macro

influences, or the reverse, on behavioral, health, or other

types of outcomes. Contemporary life exposes people to

interactions among an increasingly complex array of

biological and psychosocial influences that can damage

health. A biological model that concentrates on biolo-

gical markers or single components of the causal

processes that influence disease will unavoidably mis-

guide health policy and practice (Davison et al., 1994;

Dean & Hunter, 1996; Lancet, 1994; Smith & Torrey,

1996). Further research is needed in order to theoreti-

cally postulate how variables function together to cause

phenomena; to study how measurement affects out-

comes; to identify complex relationships and variables

that modify causal connections; and to reject or modify

a theory when findings suggest this theory can no longer

be supported. Qualitative researchers have long decried

the neglect of a deeper and more complex causal

understanding in much quantitative research.
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