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2 x° as an example of a statistical significance test

CHAPTER 7

READING THE RESULTS OF
EXPERIMENTAL RESEARCH

Introduction — 1 Statistical significance — 2 x? as an example of a
statistical significance test — 3 Tests, questions and hypotheses —
4 Confidence intervals — 5 Confidence intervals and meta-analyses
— b Non-parametric and parametric statistics — 7 Sample size —

The most transparent of all tests is one used in the research teatured
in the exemplar study for Chapter 1. It is called x° and pronounced
‘Ki-square’. How it is calculated is demonstrated below.

The Observed (or ‘O’) figures are what actually happened. The O
figures 1n Table 7.1 show that of 35 ulcers 16 healed. Eight of these
were treated with one kind of bandage and eight with another. It
should be fairly obvious from ‘eye-balling’ the data that the differences
in healing rates (8/17 and 8/18) are just the kind which might have
occurred by chance with two treatments of equal effectiveness.

Though this 1s obvious, the text below will show how the same
conclusion can be reached statistically.

8 Statistical power — 9 Measures of central tendency, dispersion The kxpected (or ‘E’) figures are what would be most expected to
and diversity: modes, medians, means, variance and standard happen by chance. In this case they are calculated simply on a fair-
deviation — 10 Expressions of effect size — 11 Counting costs — shares basis, sharing out the healings, non-healings and withdrawals

12 Sensitivity analysis — 13 Further reading on understanding the

proportionately between the two bandaging systems. Th 77 =
results of research — References and further reading 51NE Systems us 7.77

seventeen thirty-fifths of 16, which is the Charing Cross “fair-share’ of

all healings. Fair-shares is what would be most expected if the results
were due to chance. The further calculation is sumple:

(0O — E)
E
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For each pair of cells calculate

This chapter provides information to help in deciphering the numerical

presentation of research results, which people often find daunting. Then add up all the results:

B T77° (8-823° (5-632° (8669 (4-291)

1 Statistical significance

1.77 8.23 6.32 6.69 2.91
The results of experiments are usually tested for statistical signifi- (2 _ 3082
cance. Results that are statistically significant are results that are 08)" _ 1.3 = 2
3.08 |

most unlikely to have arisen by chance. Your friend deals you ten red
playing cards from what she says is a standard shuffled pack. You B
know that this is very unlikely but not impossible. Having shuffled the ]

pack again she deals you four reds. How suspicious would you be now? ]
In fact, of all four-card deals 5.5 per cent of them will be all reds. One |
such deal should come up roughly every 18 deals. Ten reds running
will only occur once in 3,333 deals. Knowing these odds, you know that

In this calculation the subtractions are the comparisons between
the actual figure (O) and what is most to be expected to happen by
chance (E). Logically then, the bigger the resulting fisure the more

Table 7.1 A Xx* calculation with the data from the leg ulcer bandaging trial

: . : _ Chapter |
ten reds is much more unlikely to be a chance deal than four reds is | (Chapter 1)
likely to be. Charing Cross Bandaging System Trial Bandaging System
. L. L. . . hat |
Testing for stat1st1cafl mgmﬁcaqce 1S a matter of c_heck.mg W ) Observed Expected Observed Expected _
actually happened against an estimate of how often it might have Heaton -
happened by chance. The principle is easy to understand, but lots of | Nox iealed 8 7.77 8 8.23 16
people get bogged down in the mechanics. 5~ Withdrayn i g-;f g s.gz 13
- | | .
Totals 17 17.00 18 18.00 35

T
X' =13;df =2, p=05].
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different the observed figures will be from the expected figures and the
less likely the results were due to chance.

The figure for x? is then looked up in a ready-reckoner table, two
rows of which are given below as Table 7.2

In Table 7.2 df stands for ‘degrees of freedom’. There are two degrees
of freedom in Table 7.1, since once the row totals and the column totals
are filled in, filling in fwo of the remaining O cells determines all the

content of all the others: think of crossword puzzles. The content of

two cells are free to vary; hence two degrees of freedom. Usually the
formula for calculating degrees of freedom 1s (columns — 1) X (rows —
1) = df: in this case (2 — 1)(3 — 1) = 2.

The p stands for probability and the p values provide an estimate of

the likelihood of a particular value of x* occurring by chance. In terms
of the card deals referred to in section 1, four reds running would have
a probability of just a bit more than 20 per cent (p = 0.20) and 10 reds
running have a probability of just over 1/3000. Usually this latter
would be expressed as p < 0.001 (less than one in one thousand).
Probability values are ubiquitous in tables of experimental results

and the top line of Table 7.2 will serve as a useful resource for you 1if

you find it difficult to remember what p values mean.

Table 7.2 shows that, at two degrees of freedom, a value for x* of

13.82 or more will occur by chance less than once per 1000, 1.e. p =
0.001. If we had a result like that we could be very confident that it
was not due to chance. It would be a highly statistically significant
result. '

A value of 5.99 or more will occur less than 5 times in 100, 1.e.
p = 0.05. By convention statisticians will not accept as significant any

value of p greater than 0.05 (or ‘the 5% level’). The question to be "
asked about the value of x* obtained in the calculation above is ‘s it

equal to or bigger than the 0.05 value?”
The 0.05 (5%) value is 5.99. The value given by the calculation was
1.3. This is much, much smaller. This tells us what we already knew,

that the result is not statistically significant. It also tells us how

Table 7.2 Critical values of x? level of significance for a two-tailed test*

p = 0.90 0.70 0.50 0.20 0.10 0.05 0.02 0.0 0.001
90% 70% 50% 20% 10% 5% 2% | % 1/1000

likely by likely by likely by likely by likely by likely by likely by likely by likely by |

chance chance chance chance chance chance chance chance chance

—

df = | 0.02 0.15 0.45 |.64 2.71 3.84 54| 0.64 10.83
df = 2 0.20 0.71 .39 3.22 4.61 5.99 7.38 9.21 13.82

* “Two-tailed’ means that we are interested in a difference in any direction. In terms of Table 7.1 that |
means any difference whether this is in favour of the Charing Cross bandages or in favour of the trial

bandages. Most significance testing is two-tailed (VWright, 1997: 39)
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statistically insignificant 1t is. It lies between the value where p =
0.70 and where it equals 0.50. So if ¥* equals 1.3 then differences of
this size would crop up as chance variations somewhere between 50
and 70 per cent of times if the experiment were repeated again and

again.

3 Tests, questions and hypotheses

Researchers often frame their questions in terms of hypotheses. In the
leg ulcer bandaging trial (Chapter 1) the so-called null hypothesis (or
H, would have been that: ‘there is no difference in effectiveness
between the two bandaging systems greater than might have been
expected by chance’. The so-called experimental hypothesis (Hy) would
be that there 1s a statistically significant difference in effectiveness
between the two bandaging systems. Saying that results show no
statistical significance is the same as saying that the null hypothesis
should not be rejected, and that the experimental hypothesis falls.
There 1s actually an opportunity for two null hypotheses here:

H,, — there is no difference in drop-out rates as between the two
bandaging systems greater than might be expected by chance.

H,. — there is no difference in healing rates as between the two
bandaging systems, greater than might be expected by chance,
when the effect of drop-out has been accounted for.

The way the calculation above (Table 7.1) was done tested both null
hypotheses in a single test. But there might have been a statistically
significant difference in drop out rates between the two bandaging
systems, but no significant difference in healing rates for those ulcers
remaining in the trial, or no significant difference in drop out rates,
but a significant difference in healing rates for those ulcers remaining
In the trial. In fact this is not so, but it is important to note that a
single statistic, x* in this case, may be measuring several differences
at once. To compare the two bandaging systems for drop out rates only
1t would be necessary to use a two row table amalgamating the healed
and the not-healed ulcers. Then the only difference visible to the
statistical test would have been that between withdrawals and non-
withdrawals. The lesson here is that the way the data should be set up
for testing will depend on the hypothesis being tested.

4 Confidence intervals

The TV pathologist says ‘Time of death twelve midnight, give or take
‘Fwo hours either side’. The ‘give or take two hours’ defines a confidence
Interval. Similarly, experimental results are always regarded as esti-
mates of the true state of affairs and are usually cited with confidence
limits. The 95% confidence intervals are those most usually used, but
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the 99% intervals are not uncommon. The assumption being made 1is
that if the experiment were repeated again and again and again it
would produce a series of different results, but 95% of these would fall
within the 95% confidence limits. For example, for the leg ulcer
bandaging trial it can be calculated that 95 per cent of such results
would fall between 5 healings for the Charing Cross Bandages and
11 for the Trial Bandages at one extreme, and 11 healings for the
Charing Cross Bandages and 5 for the Trial Bandages at the other
extreme. This 1s another way of saying that in this trial one bandaging
system would have to show at least 7 more healings than the other to
be regarded as superior, which 1s much the same as saying that any-
thing less than a difference of 7 out of 16 here would not be statis-

tically significant at the 0.05 (5%) level.

5 Confidence intervals and meta-analyses

Confidence intervals are particularly useful for making ‘at a glance’
judgements about the meaning of experimental results. This 1s shown
particularly when they are used in meta-analyses, but you can regard
this section as an illustration of how to interpret confidence intervals

however they are used.

Meta-analyses involve bringing together the findings of a number of

experiments or trials and comparing the results. They are dealt with
in further detail in Chapter 4. Very often they include a diagrammatic
synopsis of results, like Figure 7.1, which puts confidence intervals to

good use.

Figure 7.1 The effect of home visiting in preventing childhood injury: eight
randomised controlled trials reviewed by Roberts et al., 1996: odds ratios and
95% confidence intervals (see Chapter 4)
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Reading the results of experimental research 9l

Figure 7.2 First two lines from Figure 7.| annotated

LINE OF NO EFFECT
Plots falling on this line
show no difference
between interventions (or
between intervening or
not intervening)

FAVOURS INTERVENTION FAVOURS CONTROL
Plots falling in this zone (or another intervention)

show that the intervention Plots falling in this zone show
was more effective than the that not intervening (or a
control (or than the other different intervention) had better
intervention) Y resuits than the intervention
| ] . .' R
| |
| ®
i o |
| !

Each of the trials involved comparing rates of injury for children
who were and children who were not visited as part of a visiting
scheme. The diagram shows the differences between the children
visited and the controls as odds ratios for each of the trials reviewed.
Odds ratios are explained in section 10.4, but understanding odds
ratios 1s not necessary for understanding diagrams like this.

The first line on Figures 7.1 and 7.2 is for a trial conducted as part
of the USA Infant Health and Development Program (IHDP) in 1995.
The dot, or ‘plot’ on the line gives the actual result. It falls to the right
of the vertical line on the side marked ‘Favours Control’. In this trial
there was less childhood injury among those who were not visited,
than among those who were. The vertical line is called ‘the line of no
feffect’. It the actual results of a trial fell on this line this would
Indicate that there was roughly the same amount of childhood injury
among those who were visited as among those who were not: no
greater difference than might have been expected to occur by chance.
The next trial on the diagram has its results well to the left of the line
of no effect, on the side which ‘Favours Intervention’.

The plots show the actual results of the trials. But the results of a
trial are always regarded as estimates, on the assumption that had
the trial been conducted over and over again in the same way its
results would tend to cluster round a mid-point, but would not be
ldentical. The horizontal lines (or whiskers) show how wide the

. [ — o _
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estimates are. In this case the estimates are the 95% confidence limits
(see section 4). What the limits suggest is that we can be 95% certain
that the true result lies somewhere on the horizontal line. Sometimes
99% confidence intervals are used i1nstead.

The plot for the IHDP study was to the right of the midline,
favouring not visiting (Figure 7.2). But one of the whiskers strays over
the line into the area favouring intervention. Maybe if the IHDP study
had been done again in exactly the same way except that the inter-
vention and the control groups were made up of different families, its
results would be to the left of the line rather than to the right,
favouring intervention. Confidence limits that stray across the mid-
line indicate that no confident judgement can be made as to whether
two 1interventions are different in their effects.

For relatively rare events such as childhood injury the sample sizes
for each trial here are rather small. The IHDP is the largest, with
345 visited and 551 controls, and the smallest is Gray et al., with 26
visited and 25 controls. Small samples tend to give wide confidence
intervals — long whiskers, and hence imprecise estimates. Figure 7.1
shows seven of the eight trials with confidence intervals crossing the
line of no effect. The last entry on Figure 7.1 pools the results of all
trials. It treats all the trials together as if they were just one
randomised controlled trial involving several thousand subjects. The
plot for the pooled results falls to the left, favouring intervention. But,
more importantly, its confidence intervals fall entirely to the left, so
that there i1s a 95 per cent chance that the results of all the trials
together indicate in favour of visiting rather than not visiting, though
the benefits of visiting schemes still seem to be rather small.

The same logic can be used in interpreting confidence intervals
where effects are shown in different ways. But it is important to be
clear as to how the different ways of reporting results differ in express-
Ing equivalence. With odds ratios and risk ratios (section 10.4) equal
effectiveness is expressed as 1, and the line of no effect (Figure 7.2)
runs through the 1s. But where effects are shown by subtracting aver-
ages (section 10.1), or subtracting proportions (section 10.2), or using a
standard deviation (section 10.3), equivalent effectiveness is shown as
zero. Hence with these other ways of interpreting effects it is 0 (as it
were) which marks the ‘line of no effect’, and confidence intervals which
stray over that line are likely to indicate non-significant results.

6 Non-parametric and parametric statistics

Statistical tests are divided into two kinds:

® Non-parametric tests, which are the only kinds which should

be used with nominal data (see Box 6.1 in Chapter 6). Using
non-parametric tests with higher level data is possible, but non-
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parametric tests cannot ‘see’ all the information included in inter-
val or ratio level data.

e Parametric tests, which should not be used with nominal level
data, which are, but perhaps should not be, used with ordinal level
data, and which make the best use of all the information contained
in interval and ratio level data.

Parametric tests should only be used when a number of conditions are
satisfied. These include that:

® A sample is drawn from a population in which the characteristic of
interest 1s normally distributed. If it were graphed it would show a
bell-shaped curve, with the mean or average somewhere very close
to the middle of the range. Some of the complicated statistical
manoeuvres to be found in the literature derive from converting
non-normally distributed data into normally distributed data: for
example, by using the logarithms or square roots of scores rather
than the scores themselves. In Chapter 4, for example, Roberts
et al. quote their results in terms of ‘an inverse variance weighted
average of the study specific odds ratios’. The ‘inverse variance
weighted average’ is a way of converting scores that are not norm-
ally distributed into scores that are, so that they are amenable to
processing using parametric statistics.

® When comparing two samples of dissimilar size, the variance of the
two samples should be similar. Roughly speaking, the statistical
concept of variance refers to the degree of variability within
samples (see section 9).

In Chapter 2 Marshall, Lockwood and Gath write: ‘The data were
first evaluated to ensure normality of sampling distributions, linearity
and homogeneity of variance.” This means that they checked to see
whether it was permissible to use the parametric statistics they
proposed to use.

7 Sample size

The extent to which confident conclusions can be drawn from experi-
ments depends on sample size. Unfortunately, it is very difficult to lay
down general rules as to what is an adequate sample size, but Table

7.3 gives some rules of thumb for judging whether a sample size was
adequate. '

| Most of the discussion of sample size revolves around the second
1tem in Table 7.3: the size of the difference which can be detected in
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Table 7.3 Some considerations in judging adequate sample size

A sample size of 40 would be
adequate if:

A larger, sometimes much larger, sample would be
needed if:

The experiment only has two arms and
there are no less than 20 in each arm

There is no interest in differences
smaller than 10 per cent

And/or the events of interest are
common

The subjects very similar to each other
in the ways relevant to the experiment

The interventions are highly
standardised within each arm

There is no interest in what happens to
sub-groups within the different arms of
the trial

The range of possible outcomes is
limited and/or the measuring scale to
be used has a limited number of
measurement categories

The experiment has more than two arms (20 for each
arm would be a usual minimum)

There is an interest in differences smaller than 10 per
cent

And/or the events of interest are rare {an experimental
evaluation of a suicide prevention scheme would
require a very large sample, since suicide is rare even
among those of highest risk)

The subjects are very diverse in ways relevant to the
experiment — then a large sample is needed to ensure
the same range of characteristics in each arm of the
experiment (see Chapter 5, section 3 on forming
comparison groups)

The interventions within each arm are diverse. A ‘two
arm’ trial with diverse interventions within each arm is
not really a ‘two arm trial’ but a many armed trial and
there should be at least 20 subjects for each of the
diverse interventions within an arm

There is an interest in what happens to sub-groups.
The logic here is to think of the trial as having as many
arms as there are sub-groups, e.g. male controls, female
controls, males treated, females treated. In that case
there should be at least 20 in each group, disregarding
other considerations in this table

There is a large array of possible outcomes/the
measuring scale has a large number of categories.
Obviously if 100 grades of outcome are possible a
sample of 40 is too small

an experiment with a sample of a given size, which is the idea of

‘statistical power’.

8 Statistical power

Table 7.4 shows that two different kinds of errors can occur in inter-
preting the results of statistical tests. For example, there may really
be no significant difference in the healing power of two bandaging
systems, but it 1s assumed erroneously that there is — a type I error.
Or there may really be a difference and it is assumed erroneously that
there is not: a type II error. In the leg ulcer bandaging trial (Chapter

1) this is the more likely error because of the small sample size.
The more one kind of error is avoided, the more likely the other is to

be committed. However, researchers would prefer not to make any
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Table 7.4 Type I (alpha or a) and type |l (beta or B) errors

We assume that:

There is no difference There is a difference
(we do not reject the null hypothesis) (we reject the null hypothesis)

In reality there is no  Our judgement is correct We make a type | error (an

difference alpha error): we reject the null
hypothesis when we should
uphold it

In reality there is a We make a type Il error (a beta error).  Our judgement is correct

difference we do not reject the null hypothesis

when we should reject it

errors at all. There is something of an art about choosing both a
sample size and a statistical test which will produce the optimum
balance in avoiding both kinds of error, while at the same time not
requiring a sample size which is prohibitively expensive.

Improving the power of a test means lowering the risk of failing to

detect real differences — that is lowering the risks of making type II
errors. This might be done in various ways:

® Increasing the sample size.

® Using a higher level of data (see Box 6.1 in Chapter 6).
® Using a more powerful statistical test.

® Improving the design of the experiment.

But usually .the power 1s set by choosing an appropriate sample size.
The calculation of an appropriate sample size involves the researcher:

® Declaring the size of the risk he or she is willing to take of making
3 type I error: the error of assuming a difference when really there
1sn’t one. The choice is often 5 per cent (the 95 per cent limits
again). In this context this is often called the alpha level.

® Declaring the size of the difference of interest. In health and social

care oftgn only largish differences will be of practical significance.
No one is going to invest large sums of money, or undertake large

scale service reorganisations, to boost their success rate by 1 per
cent for non-life-threatening matters.

® Declaring the size of the risk he or she 1s willing to take of

committing a type II error: the error of mistaking a real difference
for a non-significant one — setting the beta level.

Sometimes you will read something like this:

Sample size for patients having a hysterectomy had a power of 80% with an
a of 0.05, to detect a change of 10 points on a physical functioning domain of
the SF-36, based on a standard deviation of 18.7. (Shepperd et al., 1998:
1787; see also Chapter 3 in this volume)

—_'_—
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This means that the researchers have decided that they are not
interested in differences of less than 10 points on part of a standard
instrument called SF-36 which measures health and well-being
(Chapter 6, section 1). Ten points was chosen as being a clintcally
important difference: the kind of outcome difference which, if it were
shown between two different treatments, would be a persuasive case
for choosing the better one. The SF-36 is a very widely used Instru-
ment and usually produces results with a standard deviation of
around 18.7 (see section 9). The authors are willing to take a 5 per
cent risk of mistaking a chance difference for a real one: « is 0.05 But
they want to be 80 per cent certain that they will not mistake a real
difference of 10 points for a chance difference. The minimum sample
size is set by entering all this information into a calculation (Cohen,
1988: Altman, 1991). For readers this information 1s useful insofar as
it warns them not to take too much notice of any comments by the
researchers about differences smaller than those nominated — here
smaller than 10 points on this scale, because their research design
makes it unlikely that they can say anything sensible about differ-
ences smaller than this. It also tells readers that if there are real
differences of 10 points or more then the researcher has an appro-
priate sample size for detecting them.

Decisions about power are not just about statistical significance.
They are also about substantive, or ‘clinical’ significance. The appro-
priate power depends on the practical implications of making a
decision on the basis of results that turn out to be wrong. For example,
making the assumption that there is no difference 1n survival rates
between two clinical operations, when there really is a ditference — a
type Il error — may have very serious consequences if a clinician then
chooses to use the technique with the higher death rate. In an
experiment providing data for making a decision like this 1t would be
wise to set a high beta level to give the best chance of detecting any
difference between the treatments. By contrast, in situations where
the consequences of making the wrong decision are not particularly
serious, or where it would take a big difference to persuade someone to
change their practice, experiments with relatively little power may be
quite adequate.

9 Measures of central tendency, dispersion and
diversity: modes, medians, means, variance and
standard deviation

Measures of central tendency express the extent to which results
cluster, or the extent to which they are spread out. The arithmetical
average or ‘mean’ is the most familiar of these — add up all the scores
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and divide by the number of scores. However, quoting the average/
mean can sometimes be misleading, for the following reasons.

e A handful of very small or very large scores can skew the mean so
that most results fall above or below it. With a skewed distribution
it 1s often better to cite the median — which 1s the score below
which 50 per cent of scores fall, and above which 50 per cent of
scores fall. Sometimes when the median is used, statistical calcula-
tions are done only with the inter-quartile range, that is with the
middle 50 per cent of scores: the 25 per cent of all scores which
fall immediately above and the 25 per cent of all scores which fall
immediately below the middle score: 25 per cents are ‘quartiles’.
The reason for doing calculations with the score 1n the inter-
quartile range 1s that the further scores are from the median the
more erratic they are likely to be. For an example see the paper by
Shepperd et al. in Chapter 3 of this volume (Table 3 on p. 30).

® A measure of central tendency has little meaning without refer-

ence to the range, which is the distance between the highest and
lowest scores.

The other main measure of central tendency i1s the mode, which is
the most commonly occurring datum. This 1s the only measure of
central tendency possible with nominal level data (see Box 6.1, Chap-
ter 6). In Table 1 in Chapter 1, for example, the mode for all ulcers 1s
‘healed’, as 1t is for the Charing Cross bandages alone. The outcome
for the Trial bandages is bimodal, with 8 healed and 8 not healed. The
mode 1s rarely a very useful statistic.

The variance 1s a measure of how variable the data are in terms of
whatever 1s being measured. The standard deviation combines in one
statistic both a measure of how much scores are clustered around the
mean, and how much they are dispersed: the smaller the standard
deviation, the more clustered the scores are around the mean. The
calculation of the standard deviation is embedded in most statistical
tests and cited in many tables of results (SD, sd, s, S or o) and 1s
Involved in calculations of statistical power. Any standard statistics
textbook will explain how these are calculated. You don’t have to know
how to calculate the variance or standard deviation in order to read

research as a practitioner. However, the two statistics do give some ‘at
a glance’ information which is useful. For example:

® [f all the subjects had the same score then the variance and the
standard deviation would be zero. In comparing two groups of
subjects, the one with highest variance or standard deviation is the
one showing most diversity in scores. Thus, if two groups of subjects
In an experiment show much the same mean, but very different
standard deviations or variances, then they differ from each other
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in that one group is more homogeneous than the other. Knowing
this can be important in judging the possibility of regression to the
mean effects (see Chapter 5, section 6) and judging whether it is
permissible to use parametric statistics (section 6 above).

® With variables that show a normal distribution the figure for the
standard deviation can be used to calculate the confidence inter-
vals. The 95% confidence limits will lie at the mean plus two stand-
ard deviations and at the mean minus two standard deviations.
Thus 1f the mean were 62 and the standard deviation were 22, the
90% confidence limits would be 18 and 106 respectively, and it
would be a reasonable expectation that 95 per cent of all scores
would fall in that range. The 99% confidence limits are the mean
plus and minus three standard deviations. Though they are rarely
used, the 68% confidence limits are the mean plus and minus one
standard deviation.

10 Expressions of effect size

Experiments are usually designed to demonstrate the size of the effect
of doing one thing rather than another. For example, it might be the
difference between treating and not treating, or the difference in
outcomes between two treatments. Some of the more usual ways
of expressing effect size are given below (sections 10.1-10.5). Note,
however, that a large effect size is not necessarily a significant effect
size. A small effect shown by comparing two large groups will be more
significant (and probably more real) than a large effect shown by
comparing two small groups. To be important effect size needs to be
both statistically significant and to be important in a practice-relevant
way.

10.1 Showing effect size by subtracting averages

The simplest way of expressing an effect is to subtract the average
results of a group who have been treated in one way from the average
results of a group who have been treated in another. This is the
approach adopted by Marshall et al. in the exemplar study in Chapter
2. Two lines of their table of results are reproduced below as Table 7.5.
Column 6 is the result of subtracting group averages.

In Table 7.5 REHAB GB (column 1) is a rating scale for observations
of social competence, the observations being conducted by observers
trained to do so. Several observers were involved so this raises issues
about inter-rater reliability (see Chapter 6, sections 5 and 6). There
are two arms to the experiment, hence two groups: a control group
receiving ordinary mental health care and a group experiencing case
management (column 2). Baseline scores (column 3) refer to the
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Table 7.5 Outcomes of a trial comparing case management and normal practice in
mental health care (see Chapter 2)

| 2 3 4 5 6 { 8
Measure Group Baseline Change at Change at Mean difference at F  Clinically
score (n) 7mth(n) 14mth(n) 14 mth (95% CI) relevant
difference
REHAB GB Control 447 (40) 4.3(35) 49(30) 43 (—49%9to +13.4) 087 |5

‘Case-man.” 42.2 (40) 5.3 (34) 7.5 (31)

average score on REHAB GB for each group, with the number of
subjects in each group in brackets — 40 each at this stage. Columns 4
and 5 show changes to these average scores, which are improvements
for both groups, though greater for the case managed group. But these
columns also show drop out, so that by 14 months there were only 30
controls and 31 case managed clients left in the experiment. Improve-
ments might be due to those least likely to recover disappearing (see
Chapter 5, section 8). The improvements quoted here will not be
improvements for all 40 in each group, but improvements on the
average baseline scores of just those left in the trial in each group.
Column 6 subtracts the mean scores of the two groups at 14 months.
Those left in the case managed group showed a greater improvement
than those left in the control group to the extent of 4.3 REHAB GB
points. As always, the results are regarded as an estimate. The 95%
confidence limits quoted suggest that there 1s only a 5 per cent chance
that the true figure lies beyond 13.4 points greater improvement for
the case managed group on the one hand, or beyond 4.9 points greater
improvement for the controls on the other. Since the confidence interval
spans scores which would show more improvement for the controls,
and scores which would show more improvement for the case managed
ogroup, the conclusion to draw is that there is no significant difference
1n improvement between the two groups. The statistic for F (column 7)
is akin to y%: the result of a test for statistical significance, which can
be looked up in a ready-reckoner of critical values for F' (similar to
Table 7.2). At 0.87, F is not statistically significant, this being shown
(as is often done) by the absence of any note to say it is, although
sometimes researchers will give p values for non-significant results
(for p values see section 2). Hence the difference between the two
groups on this line of the table 1s within the range that might be
expected to have occurred by chance. Column 8 gives a figure for the
size of the difference between groups which practitioners would regard
as clinieally important — a statement of substantive, rather than
statistical significance. Roughly speaking, this means that practi-
tioners would think something important had happened if someone
improved their REHAB score by 15 points. The measured difference
between the two groups was only 4.3 points, and 15 is not even within
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Odds ratio

(number to whorg event happened in one group divided by number
to whom event did not happen in that group) divided by (number
to whom even!: happened in the other group divided by number to
whom event did not happen in that group)

(8/123) / (15/117) = 0.065/0.128 = 0.508 = 0.51 = Odds ratio

the confidence limits range. From a practitioner’s point of view the two
ogroups were just as much like each other at the end as they were at

the beginning in terms of social competencies.

10.2 Showing effect size by subtracting proportions and
rates

numerical !:erms, but odds ratios are a particularly common statistic
tor expressing the results of experimental work. In either case a ratio
of 1 would mean that there was no difference between the two groups.

Another way of expressing effects is to convert results to proportions,
such as percentages or rates out of 1000, and subtract. Thus one of the

3 Neither of these statistics is particularly easy to describe in non-
trials contained in the meta-analysis diagram (Figure 7.1 section 5) '

showed that there were eight head injuries among the 131 visited, and A ratio of 1 would put the result the I . :
15 among the 132 controls. This converts to injury rates of 6.1 and summarising a meta-anal si; (S OnF_ ¢ line of no effect in a diagram
11.36 per 100 children'respectively. Sub'tr:af:ting yields 2.7. This might ; intervention group is bein Y om SEC 3 lglg] es 7.1 and 7.2). 'W.here an
be_ interpreted by saying tha15 home visiting may have reduced the { though not universal. to d%vi de f}?;ere;:lts ? co&t rql SToup 11?. 18 usual,
injury rate by 5.26 per 100 children; or by 5.26 per cent. by the results for th; control (as above) TEZH :ailzril(::se r:fellle:::smtli?lull)

suggest that something was less likely to happen to the intervention
group, and ratios above 1 mean that something was more likely to
happex_l !‘,0 ?he intervention group. In the example above there were
fewer Lnjuries In the group visited, hence the ratio was less than 1
and this was evidence in favour of home visiting. However, this triai
was about preventing something happening. Thus if these figures had
come from a trial to see whether a drug cured an illness, a ratio of less
than 1 would be evidence against the drug’s effectiveness. Where two
treatments are being compared with each other, it is important look
carefully to see what has been divided into what.

Ip the leg ulcer bandaging trial (Chapter 1) the authors cite an odds
ratio of 1.11, which is short for 1.11 healings for the Charing Cross
’ bandages for every 1 of the trial bandages, or ‘1 to 1.11’. If you look at
5 Table 7.1 you will not be surprised to see that this is the result
of comparing 8 out of 17 with 8 out of 18. The authors also cite
confidence intervals of 0.24 to 5.19. Since the limits fall on either side
of 1, the ‘true’ result might be in favour of either bandaging system
(see Section 5 for the way this interpretation is made).

10.3 Showing effect size using standard deviation

This 1s sometimes simply called ‘effect size’. It is calculated with the

formula

(Mean of change shown by treatment group) —
(Mean of change shown by alternative treatment/control group)

Standard deviation of mean change shown by alternative
treatment/control group

There 1s no example of this calculation in the studies in this volume,
but if you do encounter it, a result of zero means no difference. Assum-
ing that improvement is shown in terms of higher scores, a result of 0.2
would be a small difference in favour of the treatment group, a result N I
of 0.5 a medium sized difference, and one of 0.8 or more, a large differ-
ence. Minus figures indicate that the control or alternative treatment

group has fared better than the treatment group. The smaller scores
might or might not be statistically significant depending on the result

of a test of statistical significance.

10.5 Numbers needed to treat (NNT)

For practitiongs, one of the most useful expressions of effect size
1s the calculation of the numbers needed to treat (NNT) (Chattelier

et al., 1996). This is a measure of how many people would, on average

10.4 Showing effect sizes using risk ratio and odds ratio

Using the figures for home visiting trials again, as above (section 10.2):

Ct?n_llimrison with the alternative treatment. In the trials on home
visiting al}d childhood injury (Chapter 4) this is the question of how
many families would need to be visited in order to prevent one injury
since the alternative is simply not visiting at all. One of the trial;
showed that there were 8 head Injuries among the 131 visited, and 15

Risk ratio
(number to whom event happened in one group divided by total

in group) divided by (number to whom event happened in the other

group divided by total in group)
(8/131) / (15/132) = 0.061/0.1136 = 0.537 = 0.54 = Risk ratio
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among the 132 controls. This converts to injury rates of 6.1 and 11.36
per 100 children respectively. But in this case the interest 1s 1n non-
injury rates, which are 93.9 and 88.64 respectively.

The calculation for NNT 1is:

100 divided by (percentage or rate of desired outcome 1n inter-
vention group) minus (percentage or rate of desired outcome 1n non-

intervention group)

100/ (93.9 — 88.64) = 19

Thus this particular trial suggests that 19 families (of the kinds
featured in the trial) need to be put on the visiting list to prevent one
head injury; that visiting 100 families might prevent between 5 and 6
injuries. Or, put another way, visiting one of these families would
reduce the chances of a child there experiencing a head injury by 1 1n
19, or by 5.26 per cent.

NNT figures should be interpreted with care. If a practitioner had a
case mix identical to that featured in the research and was able to do
precisely what was done in the research then the NNT figure would
provide a close estimate of the number of these clients who would have
to be treated in this way to produce an additional benign outcome.
However, it is highly likely that any particular practitioner will have a
case mix that is different from that which featured in the research,
and may not be able to do exactly what was done in the research.

11 Counting costs

NNT calculations convert the results of an experiment into a form
where the cost per desirable outcome can be calculated. If the NN'T 1s
95 then the additional cost of getting one additional benign outcome
by adopting this intervention will be the cost of intervening 95 times.
The exemplar study in Chapter 3 illustrates the way in which the
costs of services are calculated, and the further reading for this

chapter gives a list of useful sources.

12 Sensitivity analysis

Experiments are always to be regarded as producing estimates as
to the true state of affairs. Confidence intervals (sections 4 and 5)
provide some purchase on the extent to which experimental results
are likely to be misleading because of the play of chance factors.
However, experimental research may also provide a misleading basis
for practice decision-making because the circumstances under which
the research was conducted are unlike those in some practice setting
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(Chapter 5, section 12). A sensitivity analysis is a ‘what if’ analysis.
The researcher says, ‘things were thus and thus in the research, what
if they had been different?” Sometimes sensitivity analyses are con-
ducted as a way of managing the problem of subjects lost to an
experiment. The researcher will say, ‘if there were data for these lost
subjects it might be like this, and then the results would be thus, or
alternatively it might be like that, and then the results might be like
this.” However, sensitivity analyses are most common as accompani-
ments of economic analyses. Chapter 3 in this volume is an economic
analysis, which compares the cost-effectiveness of a hospital at home
scheme with inpatient care. The first phase of the study, which is not
reprinted in this volume, was a randomised controlled trial showing
that both modes of postoperative care were equally effective, leaving
the way clear to choose the one with the lowest cost. In fact, the study
found that inpatient care was cheaper than hospital at home care.
However, costs depend on a great many factors, such that costs in one
place may be different from costs in another and change quickly over a
period of time (Briggs and Gray, 1999). In their study, Shepperd et al.
(1998) carry out a number of sensitivity analyses to investigate this.
Table 7.6 gives part of one of these by way of illustration.

The research found that care was delivered for a much longer
period to hospital at home patients than to inpatients. This made it
more expensive. The researchers were suspicious that this was an
‘experiment effect’ (see Chapter 5, sections 5 and 12) arising from the
staft delivering care at home behaving differently because they were
involved in an experiment. If this were so, then the results of the
research might be misleading insofar as staff delivering hospital at
home care routinely, and not as an experiment, might discharge
patients quicker and provide a cheaper service. Table 7.6 gives a
number of estimates for the relative costs of hospital at home and
inpatient care according to different lengths of time spent in hospital
at home care.

Table 7.6 Sensitivity analysis of relative costs of inpatient care and hospital at home
(HaH) care varying average length of hospital at home treatment: hysterectomy
patients only (see Chapter 3)

Cost per case of hospital at home care,
above or below cost of inpatient care

+£92.40 (HaH is more expensive than Average time as actually recorded
inpatient care)

—£21.75 (HaH would be cheaper than Estimate if HaH was on average one day shorter
inpatient care) |

—£80.84 (HaH would be much cheaper than  Estimate if HaH was on average two days shorter
inpatient care)
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13 Further reading on understanding the results of
research

On the way experimental data are analysed and presented

There are many excellent textbooks on the statistics relevant to
research in health and social care. Coolican (1994) is recommended for
1ts user-friendliness and as a good primer on research methods as
well, and Wright (1997) provides some accessible commentary on the
theory and philosophy of statistics in addition to basic information.
Most recent textbooks assume readers have access to computer soft-
ware for doing statistical calculations. The Statistical Package for
the Social Sciences (SPSS) is most widely used by sociologists and
psychologists and very widely used in medical and nursing research as
well (Norusis, 1993). Computer packages often turn out to be an easy
way of producing results which are incomprehensible to the user.
Wright (1994) and Pett (1997) (and many other writers) explain how
to interpret the computer print-outs. For a book that is specifically a
tutor on how to use SPSS, readers might try the book and disk kit by
Babbie and Halley (1994). Pett (1997) is a particularly useful text for
dealing with the problems of small samples and unusual distributions
and takes its examples from health care.

Two widely used texts for the statistics of medical research are

Altman (1991) and Bland (1995).

On costings

Netton and Beecham (1993), Clark and Lapsley (1996) and Yates
(1996) all provide details about costing methodologies. Jefferson et al.
(1996) 1s a good primer on economic analysis in health and social care
generally.

The Further Reading in Chapter 5 includes references to conducting
cost-effectiveness research.
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